Comparative study of picoplankton biomass and community structure in different provinces from subarctic to subtropical oceans

Yao Zhang, Nianzhi Jiao *, Ning Hong

State Key Laboratory for Marine Environmental Sciences, Xiamen University, Xiamen 361005, PR China

Abstract

Picoplankton biomass and community structure in the subtropical and subarctic Pacific Oceans were investigated during November 2003, April–August 2005 and July–August 2005. The sampling covered the subarctic K2 station, the Western North Pacific subtropical gyre (WNPG1 and 2 stations) and the Eastern North Pacific subtropical area (ENP1, 2, 3 and 4 stations). Distinct differences in community structure and autotrophic and heterotrophic picoplankton biomass were observed among the above provinces. In subtropical areas, the picoplankton community comprised Prochlorococcus, Synechococcus, picoeukaryotes and heterotrophic bacteria. While in the subarctic area (K2 station), Prochlorococcus were absent. Prochlorococcus were numerically dominant in the subtropical oceans, their abundance tended to decrease with increasing nutrient levels, which is the opposite of the other picoplankton populations. Although the aerobic anoxygenic phototrophic heterotrophic bacteria (AAPB), accounted for only a small proportion of total heterotrophic bacterial abundance, their potential contribution to carbon export may be important due to their larger cell size and higher cell turnover rates compared with other heterotrophic bacteria. Biomass contribution of the AAPB increased distinctly along the oligotrophic to relatively eutrophic gradient. Vertically, AAPB generally followed the phytoplankton except in the subtropical WNPG. Spatial variability of biomass in the autotrophic picoplankton was distinctly larger than that in the heterotrophic bacteria. Changes in the picoplankton community were more closely associated with latitude while nutrient availability was more important for differences in picoplankton biomass. The biomass of autotrophic picoplankton in the upper mixed layer, and also the depth attenuation, were higher in eutrophic relative to oligotrophic waters. Picoplankton seemed to be an important source of new organic carbon for higher trophic level organisms and for detritus production, especially in the oligotrophic subtropical gyre.

1. Introduction

Picophytoplankton (<2 μm) are composed of three groups of autotrophs: Prochlorococcus, Synechococcus and picoeukaryotes. These tiny primary producers contribute substantially to both total phytoplankton biomass and production in marine ecosystems, especially in oligotrophic waters where they account for up to 90% of the total photosynthetic biomass and carbon production (Campbell et al., 1994; Li et al., 1983). Despite a large number of ecological studies on picophytoplankton in various oceanic waters of the Pacific (Binder et al., 1996; Campbell and Vaulot, 1993; Liu et al., 2002a), Atlantic (Buck et al., 1996; Li, 1995; Olson et al., 1990), Mediterranean Sea (Bustillos-Guzman et al., 1995; Vaulot et al., 1990) and Arabian Sea (Campbell et al., 1998), few studies have focused on comparisons among different marine regimes.

Heterotrophic bacteria are typically considered solely as decomposers in marine ecosystems. The concept of the “microbial loop” endowed them with new roles in the biological pump (Azam et al., 1983). Recent studies have further revealed that some bacteria are capable of harvesting light for supplemental energy (Yurkov and Beatty, 1998a, b), such as aerobic anoxygenic phototrophic bacteria (AAPB). AAPB have been reported to play a unique role in carbon cycling in the ocean (Jiao et al., 2003; Karl, 2002; Kolber et al., 2001), and have drawn much attention from microbial oceanographers (Cottrell et al., 2006; Schwalbach and Fuhrman, 2005; Sieracki et al., 2006; Zhang and Jiao, 2007). Although the global distribution pattern of AAPB in the oceans has been brought to light (Jiao et al., 2007b), differences in abundance and vertical profiles of AAPB between high latitudes and low latitudes remain unclear. In the present study, four distinct provinces in the Pacific Ocean were investigated: The Western subarctic gyre (the VERTIGO station K2), the Western subtropical gyre (stations WNPG1 and 2), the Eastern subtropical Pacific (stations ENP1–3) and the Eastern subtropical Pacific off-shore.
waters (station ENP4). We will address differences in the picoplankton biomass and community structure between subarctic and subtropical regimes, in an attempt to better understand the mechanisms of attenuation of vertical carbon flux at different latitudes and different trophic levels.

2. Materials and methods

2.1. Study areas and sampling

Station K2, located in the Western North Pacific (47° N 160° E) (Fig. 1), is a relatively eutrophic site in the NW Pacific subarctic gyre, with high macronutrient levels (nutrients concentrations are provided in Buesseler et al., 2008), high chlorophyll a concentration and significant seasonal variability in primary production and carbon export (Buesseler et al., 2007, 2008). Investigation at K2 was conducted during July 30–August 6, 2005 (deployment 1, D1) and August 10–17, 2005 (deployment 2, D2). D1 took place during the decline of the seasonal maximum in phytoplankton biomass, and D2 was just prior to a smaller autumn bloom (Buesseler et al., 2007, 2008). Four vertical profiles with 5 depths within the upper 50 m water column were sampled during D1 and D2.

Stations WNPG1–2 (Fig. 1) in contrast were in oligotrophic waters in the WNPG, and are characterized by warm waters with persistently low macronutrients and correspondingly low surface chlorophyll (Schlitzer, 2004; Shimada et al., 1993). Stations ENP1–4 (Fig. 1) were in the Eastern subtropical Pacific, which had a relatively high chlorophyll a concentration (Table 1) compared with WNPG (Binder et al., 1996; Landry et al., 1996; Schlitzer, 2004). ENP4, located in the open water off the coast, was at mesotrophic conditions among these subtropical stations (Schlitzer, 2004). Samples from stations WNPG1, WNPG2 and ENP1–3 were collected from 7 to 10 depths within the upper 200 m during April–August 2005. Samples from stations ENP4 were collected from 10 depths within the upper 200 m water column, and four deployments were conducted during November 1–15, 2003.

2.2. Hydrographic parameters

A SeaBird CTD-General Oceanic Rosette assembly with Go-Flo bottles (SBE 9/11 plus, SeaBird Inc., USA) was employed to record temperature and salinity as well as to collect seawater samples. The mixed-layer depths were defined as the maximum density gradient depth by CTD measurement. The depth of the euphotic zone was defined as the 0.1% surface irradiance depth. Samples for chlorophyll a analysis were collected on 0.7 μm pore-size GF/F filter paper (Whatman) and determined using a Turner-Designs-Model 10 fluorometer. Chlorophyll a data at K2 were provided by the VERTIGO Project (Dr. S.I. Saitoh and S. Okamoto, Hokkaido University, Japan).

2.3. Picoplankton abundance

For picoplankton, 5 ml of seawater per tube (five duplicate tubes for each sample) was preserved with glutaraldehyde (0.5% final concentration), quick frozen in liquid nitrogen, and then stored at −80°C until analysis.

Abundances of Synechococcus, Prochlorococcus, picoeukaryotes and heterotrophic bacteria were determined using flow cytometry (FCM) (Jiao et al., 2002; Marie et al., 1997) with an Epics Altra II (Beckman Coulter, USA) flow cytometer, equipped with a 306C-5 argon laser (Coherent Inc., USA). One micrometer fluorescence beads (PolySciences Inc., US) were added into the samples as an

Fig. 1. Location of the sampling stations (crosses) in the North Pacific Ocean. The background chlorophyll a remote image (Aqua-MODIS) of August 2005 was downloaded from the website (http://oceancolor.gsfc.nasa.gov/). Chlorophyll a scale shown on right in mg m⁻³.

Table 1

| Physical and chemical conditions at the sampling sites* |
|------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| | K2 | WNPG1 | WNPG2 | ENP1 | ENP2 | ENP3 | ENP4 |
| Surface water temperature (°C) | 10.3±0.5 | 27.7 | 28.2 | 27.5 | 28.2 | 28.1 | 28.5±0.03 |
| Surface water salinity (%) | 32.9±0.01 | 34.4 | 34.4 | 34.1 | 34.1 | 34.1 | 34.1 |
| Depth of mixed layer (m) | 25 | 100–125 | 100–125 | 75 | 75 | 50–75 | 50–75 |
| Chlorophyll a max depth (m) | 50 | 125 | 125 | 75 | 75 | 50–75 | 50–75 |
| Euphotic zone (0.1% light) (m) | 50 | 150 | 150 | 125 | 125 | 125 | 125 |
| Surface chlorophyll a (mg m⁻³) | 0.35±0.05 | 0.03 | 0.03 | 0.12 | 0.11 | 0.10 | 0.13±0.01 |
| Chlorophyll a averaged over upper 200 m (mg m⁻³) | 0.27±0.04 | 0.08 | 0.08 | 0.10 | 0.11 | 0.10 | 0.12±0.005 |

* K2: subarctic sea area; WNPG: the Western North Pacific subtropical gyre; ENP: the Eastern North subtropical Pacific.
FCM analysis reference, and the half-peak coefficients of variation were always controlled at lower than 1.0%. The coefficients of variation in the same samples were lower than 10%. The data we used were the means.

2.4. AAPB abundance

Subsamples for AAPB analysis were collected with 100 mL brown polypropylene bottles. Immediately after sampling, aliquots of 20 mL seawater were fixed for 15 min with paraformaldehyde (2% final concentration), and then stained with 4′,6-diamidino-2-phenylindole (DAPI) (5 μg/mL; final concentration) for 30 min in the dark. Cells were filtered onto 0.2 μm pore-size black polycarbonate membranes (Whatman) for abundance determination. The tropical samples were measured on board. The subarctic samples were stored at −80°C until analysis.

An epifluorescence microscope (Carl Zeiss Axioskop) with a 50 W mercury lamp was used to image bacteria. It was equipped with an infrared-sensitive charge-coupled device camera (SPOT Diagnostic Instruments, Inc.), interfaced with a computer. Image-Pro Plus software (Media Cybernetics, Inc.) was used to count and analyze cells in the images. AAPB abundances were determined by the time-series observation-based infrared epifluorescence microscopy (TIREM) protocol (Jiao et al., 2006). Cell biovolumes of AAPB and other heterotrophic bacteria were compared by image analysis using the DAPI images. For each sample, 30 AAPB cells and 30 heterotrophic bacterial cells were compared by image analysis using the DAPI images. For each sample, 30 AAPB cells and 30 heterotrophic bacterial cells were measured for size comparison.

2.5. Estimation of carbon biomass

Carbon biomass of the four picoplankton groups was estimated by conversion from cell abundance using the factors of 250, 53, 2.5. Estimation of carbon biomass

Carbon biomass of the four picoplankton groups was estimated by conversion from cell abundance using the factors of 250, 53, 2100 and 20 fg C cell⁻¹ for Synechococcus, Prochlorococcus, picoeukaryotes, and heterotrophic bacteria, respectively (Buck et al., 1996; Campbell et al., 1994; Lee and Fuhrman, 1987; Morel et al., 1993; Simek et al., 1999). The average volume of AAPB cells was 3.6 ± 0.8 times larger than that of heterotrophic bacteria. The conversion factor for AAPB was thus determined to be 72 fg C cell⁻¹.

3. Results

3.1. Contrasting hydrographic conditions

K2 was characterized by low temperature, low salinity and high chlorophyll a concentration (Table 1). The chlorophyll maximum layer (DCM) occurred at 50 m, deeper than the mixed layer (25 m).

The subtropical stations in contrast were characterized by high temperature, high salinity and low chlorophyll a concentration (Table 1). The surface and depth-weighted chlorophyll a concentrations were around 0.03 and 0.08 mg m⁻³ at the two stations in the Western North Pacific gyre, and 0.1–0.13 mg m⁻³ at the Eastern North Pacific stations. Among stations ENP1–4, chlorophyll a concentration was a little higher at ENP4. DCM coincided roughly with the depth of the mixed layer (Table 1).

3.2. Contrasting picoplankton community structure

In the subarctic area (K2 station), the picoplankton community comprised Synechococcus, picoeukaryotes and heterotrophic bacteria, and Prochlorococcus were absent. Cell abundances ranged from 1.8 × 10³ to 1.1 × 10⁴ cells ml⁻¹ for picoeukaryotes and from 1.7 × 10² to 5.8 × 10⁴ cells ml⁻¹ for Synechococcus. Abundance of heterotrophic bacteria was about two orders of magnitude higher than that of picoeukaryotes. Abundance of AAPB was at the same level as Synechococcus (Fig. 2). Results from the two deployments (D1 and D2) showed differences in the maximum abundance depth of Synechococcus and picoeukaryotes over time (Fig. 2).

In the subtropical areas, the picoplankton community comprised Prochlorococcus, Synechococcus, picoeukaryotes and heterotrophic bacteria. In contrast to K2, Prochlorococcus were extremely abundant with depth-weighted abundances of around 8 × 10⁴ cells ml⁻¹ at WNPG stations 1 and 2, 4.5 × 10³ cells ml⁻¹ at ENP1–3, and 3 × 10³ cells ml⁻¹ at ENP4 (Table 2, Fig. 2). Among the subtropical stations, the Western North Pacific gyre was characterized by the distinct low abundances of Synechococcus (10³ cells ml⁻¹), picoeukaryotes (10² cells ml⁻¹) and AAPB (10²–10³ cells ml⁻¹). Along the ENP stations, abundance of heterotrophic bacteria increased eastward with the highest abundance of 3.2 ± 0.5 × 10⁵ cells ml⁻¹ at ENP4 (Table 2, Fig. 2). Vertically, the maximum distribution depths of Prochlorococcus were always deeper than those of Synechococcus, picoeukaryotes and AAPB. The maximum abundance depth of Prochlorococcus increased with trophic conditions (Fig. 2). Such trends were less regular for other groups of picoautotrophs. The abundance of heterotrophic bacteria also decreased with depth, but remained high (10⁴ cells ml⁻¹ at 150 m) even at the bottom of the euphotic zone. The vertical distributions of AAPB were basically similar to those of the phototrophic components rather than the heterotrophic bacteria, confined to the euphotic zone (Fig. 2). The maximum abundance depth of AAPB were consistent with those for chlorophyll a, except for stations WNPG1–2 (Table 1). At the WNPG stations, weak maxima of AAPB were present at shallower depths than those for chlorophyll a (Table 1, Fig. 2).

3.3. Contrasting picoplankton carbon biomass

Off-shore station ENP4 was characterized by a remarkably high biomass of Synechococcus and picoeukaryotes and a low biomass of Prochlorococcus. In contrast, stations WNPG1–2 in the sub-tropical gyre were characterized by an extremely high biomass of Prochlorococcus, but a very low biomass of Synechococcus and picoeukaryotes (Table 2, Fig. 3). Biomass of Synechococcus and picoeukaryotes at K2 in the subarctic area were also significantly higher than at the other subtropical stations (except for ENP4) (Table 2, Fig. 3). From the western subtropical Pacific to the Eastern subtropical Pacific, the biomass of Prochlorococcus decreased observably, with the highest biomass of 5.34 mg C m⁻³ at WNPG2. There was an increasing trend in biomass of both Synechococcus and picoeukaryotes along trophic gradients from the western to the eastern subtropical Pacific (Table 2). Although Synechococcus were numerically more abundant than picoeukaryotes, the latter contributed more significantly to photosynthetic carbon biomass (Table 2, Fig. 3). Except for ENP4, the biomass of picoeukaryotes was 2.1–2.9 times higher than that of Synechococcus. AAPB biomass was relatively higher at K2 and lowest in the oligotrophic ocean. The biomass of heterotrophic bacteria was less than the biomass of pico-sized autotrophs among all of the stations investigated (Table 2, Fig. 3). Higher bacterial biomass usually occurred where Synechococcus and picoeukaryotes were more abundant. Our observations were that autotrophic biomass and heterotrophic biomass of picoplankton were comparable in the subtropical Western North Pacific gyre and Eastern North Pacific, while autotrophic biomass was higher than heterotrophic biomass in the relatively eutrophic subarctic and the subtropical Eastern North Pacific off-shore waters (Table 2).
Table 2

<table>
<thead>
<tr>
<th></th>
<th>K2<sup>b</sup></th>
<th>WNPG1</th>
<th>WNPG2</th>
<th>ENP1</th>
<th>ENP2</th>
<th>ENP3</th>
<th>ENP4<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell abundance (cells ml<sup>-1</sup>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prochlorococcus</td>
<td>ND<sup>c</sup></td>
<td>85,500</td>
<td>100,800</td>
<td>67,600</td>
<td>70,400</td>
<td>61,400</td>
<td>60,300 ± 13,500</td>
</tr>
<tr>
<td>Synechococcus</td>
<td>13,900 ± 1400</td>
<td>1300</td>
<td>1700</td>
<td>2100</td>
<td>3700</td>
<td>3200</td>
<td>41,000 ± 15,700</td>
</tr>
<tr>
<td>Picoeukaryotes</td>
<td>5200 ± 600</td>
<td>570</td>
<td>730</td>
<td>830</td>
<td>1700</td>
<td>1400</td>
<td>6300 ± 1500</td>
</tr>
<tr>
<td>Heterotrophic bacteria</td>
<td>382,800 ± 38,500</td>
<td>249,400</td>
<td>283,500</td>
<td>318,200</td>
<td>358,900</td>
<td>329,300</td>
<td>528,000 ± 98,800</td>
</tr>
<tr>
<td>AAPB</td>
<td>14,000 ± 900</td>
<td>1700</td>
<td>2100</td>
<td>2900</td>
<td>3200</td>
<td>3200</td>
<td>7900 ± 2500</td>
</tr>
<tr>
<td>Biomass (mg C m<sup>-3</sup>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prochlorococcus</td>
<td>ND<sup>c</sup></td>
<td>0.34</td>
<td>0.44</td>
<td>0.52</td>
<td>0.93</td>
<td>0.80</td>
<td>10.25 ± 3.94</td>
</tr>
<tr>
<td>Synechococcus</td>
<td>3.47 ± 0.36</td>
<td>1.19</td>
<td>1.53</td>
<td>1.74</td>
<td>3.64</td>
<td>3.01</td>
<td>13.14 ± 3.08</td>
</tr>
<tr>
<td>Picoeukaryotes</td>
<td>10.86 ± 1.20</td>
<td>4.99</td>
<td>5.67</td>
<td>6.36</td>
<td>7.18</td>
<td>6.59</td>
<td>10.56 ± 1.98</td>
</tr>
<tr>
<td>Heterotrophic bacteria</td>
<td>7.66 ± 0.77</td>
<td>0.12</td>
<td>0.15</td>
<td>0.21</td>
<td>0.23</td>
<td>0.23</td>
<td>0.57 ± 0.21</td>
</tr>
<tr>
<td>AAPB (mg C m<sup>-3</sup>)</td>
<td>1.01 ± 0.06</td>
<td>1.09</td>
<td>1.09</td>
<td>1.07</td>
<td>1.09</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>Autotrophic picoplankton C/heterotrophic bacterial C</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td></td>
</tr>
</tbody>
</table>

* Data were depth-weighted averages in corresponding euphotic zone (see Table 1).

^b Values of standard deviation (SD) were calculated from two deployments (four CTD casts each deployment) at K2 and from four deployments (one CTD cast each deployment) at ENP4.

^c ND = not detected.
There were interesting differences in the vertical distributions of carbon biomass of autotrophic picoplankton and heterotrophic bacteria (Fig. 3). Carbon biomass of autotrophic picoplankton in the upper mixed layer was much higher than near the bottom of the euphotic zone in relatively high nutrient and chlorophyll areas (stations ENP4 and K2). While in oligotrophic waters, variations in carbon biomass of the picoplankton between the upper and lower layers were much smaller (Fig. 3).
4. Discussion

Picoplankton in the Pacific Ocean has been studied over the past few decades (Binder et al., 1996; Campbell and Vaulot, 1993; Ishizaka et al., 1994; Jiao et al., 2002, 2005; Jochem, 1995; Landry et al., 1996; Liu et al., 2002a,b; Partsensky et al., 1996; Shimada et al., 1993). The distinct differences between this study and previous ones are that we compared vertical profiles of carbon biomass between autotrophic and heterotrophic picoplankton across a larger-scale environmental gradient and that we included AAPB as a unique picoplankton component and showed the variation of picoplankton community structure in different marine provinces.

The abundance of picoplankton we observed in the subarctic sea area compared favorably to the range seen by Liu et al. (2002a,b). The abundances observed in the WNPG, ranging from 4.5 × 10^4 to 1.2 × 10^5 for Prochlorococcus, from 8.4 × 10^2 to 2.4 × 10^3 for Synechococcus, from 4.1 × 10^2 to 1.2 × 10^3 for picoeukaryotes and from 1.5 × 10^2 to 3.4 × 10^5 for total heterotrophic bacteria in the euphotic zone (upper 150 m), compared well with the range seen by Shimada et al. (1993). Also, our data in the Eastern North subtropical Pacific are as expected when compared with US Joint Global Ocean Flux Study data from the equatorial Pacific (Binder et al., 1996; Landry et al., 1996).

4.1. Picoplankton community composition and carbon biomass in different marine provinces

Picoplanktons are known to be the dominant components of the planktonic community in oceanic waters. However, our results showed great variability both in picoplankton biomass and community structure among different oceanic provinces.

In the subarctic Pacific, the picoplankton community was characterized by high abundances of Synechococcus and picoeukaryotes and the absence of Prochlorococcus. The picoeukaryotes are the dominant contributors to pico-sized autotrophic biomass in the North subarctic Pacific. The contribution of Synechococcus to photosynthetic biomass remained small compared with picoeukaryotes, though their abundance was higher. Prochlorococcus were not detected, although they have been reported to occur as far north as 60°N in the North Atlantic (Buck et al., 1996). Many studies reported that Prochlorococcus are absent from the North subarctic Pacific water of 45°N due to the lower water temperature and salinity than in the North Atlantic (Boyd and Harrison, 1999; Obayashi et al., 2001; Partsensky et al., 1999a). In the subtropical Pacific, in contrast, the picoplankton community was characterized by abundant Prochlorococcus and less abundant Synechococcus and picoeukaryotes. Prochlorococcus were dominant in the total phytoplankton biomass in subtropical oceans. There were distinct decreasing trends in abundance and biomass of Prochlorococcus from the oligotrophic Western North Pacific gyre to the mesotrophic Eastern North Pacific (Schlitzer, 2004), which is the opposite of the other picoplankton populations. These variations between different latitudes and along trophic gradients at the same latitude are in agreement with the intrinsic nature of the species. Prochlorococcus are warm-water species associated with oligotrophic water, while Synechococcus, picoeukaryotes and AAPB prefer eutrophic conditions (Jiao et al., 2005, 2007a; Partsensky et al., 1999b). High-abundance values of heterotrophic bacteria occurred in the low-latitude Eastern North Pacific, but the difference in abundance between high-latitude and low-latitude areas was relatively small, whereas high-abundance values of AAPB occurred in the high-latitude subarctic sea, which was likely to be associated with the high chlorophyll a concentration there. The fact that AAPB are less influenced by low temperature compared with other bacteria may also be responsible to some extent for their distribution pattern across latitudes (Zhang and Jiao, 2007).

4.2. Habitat segregation of the picoplanktonic groups

Vertical distributions of different autotrophs are usually thought to be in agreement due to similar control of light on their growth, but a fine differentiation was seen here between different picoplankton groups. Due to being able to utilize dim light for photosynthesis (Jiao et al., 2002; Partsensky et al., 1999b), the maximum distribution depth of Prochlorococcus was deepest among all the picoautotrophs. Picoeukaryotes ranked second, and Synechococcus came last. AAPB, being primarily heterotrophic, are still light associated, and their distribution was never below the euphotic zone, which distinguished the AAPB from other heterotrophic bacteria (Figs. 2 and 3). In general, AAPB followed the chlorophyll a concentration along the depth profile (vertical profiles of chlorophyll a not shown). One exception was the extremely oligotrophic WNPG, where the AAPB maximum occurred at shallower depths than chlorophyll a. In the WNPG, since the phytoplankton did not thrive in the euphotic zone, the AAPB only maintained minimum abundance throughout the euphotic water column, with a weak maximum occurring near the surface, probably benefiting from light (Jiao et al., 2007b). These observations suggest that AAPB are associated with phytoplankton. The organic matter supply from phytoplankton may be a key factor in the vertical distribution of AAPB (Zhang and Jiao, 2007).

Horizontal distributions, on the other hand, seemed to be better correlated with nutrients. Prochlorococcus are basically associated with oligotrophic conditions and can flourish in stratified nutrient-deplete waters (Campbell and Vaulot, 1993; Lindell and Post, 1995; Olson et al., 1990), while Synechococcus, picoeukaryotes and heterotrophic bacteria seem to be associated more with eutrophic conditions (Fuhrman, 1999; Jiao et al., 2002). Correlations analysis showed habitat segregation of the picoplanktonic groups induced by nutrients. Statistically significant positive correlations were observed between Synechococcus and picoeukaryotes (r = 0.98, p < 0.01), picoeukaryotes and bacteria (r = 0.97, p < 0.01), Synechococcus and bacteria (r = 0.96, p < 0.01). AAPB and picoeukaryotes (r = 0.83, p < 0.01), AAPB and Synechococcus (r = 0.82, p < 0.01), and between AAPB and total bacteria (r = 0.71, p < 0.05) (Fig. 4A–E and J). In contrast, Prochlorococcus showed inverse relationships with other picophytoplankton and even with heterotrophic bacteria (Fig. 4F–J). Such inverse relationships are also found in the Arabian Sea (Campbell et al., 1998) and China seas (Jiao et al., 2002). The inverse relationships between Prochlorococcus and other picoplankton populations (Fig. 4F–J) seem to be a general feature along nutrient gradients from oligotrophic to relatively eutrophic regimes (Schlitzer, 2004). In the case of horizontal distribution of AAPB, since the bacterial chlorophyll a-based phototrophic function in AAPB is a supplement to their normal organic carbon respiration (Beatty, 2002; Kobližek et al., 2003; Suyama et al., 2002), it is thus expected to make AAPB more competitive in oligotrophic environments (Beatty, 2002; Kolber et al., 2000, 2001). However, our large-scale observations support the distribution pattern of higher abundance of AAPB in eutrophic water than in oligotrophic water (Jiao et al., 2007b; Zhang and Jiao, 2007). The strong dependence of AAPB on dissolved organic carbon produced by phytoplankton may limit their competition in oligotrophic oceans (Jiao et al., 2007b; Zhang and Jiao, 2007).

Physical conditions are also a factor influencing the dynamics of picoplankton over large spatial scales. The mixed-layer depth
Fig. 4. Relationships between different groups of picoplankton. (A) Synechococcus vs. picoeukaryotes; (B) picoeukaryotes vs. bacteria; (C) Synechococcus vs. bacteria; (D) AAPB vs. picoeukaryotes; (E) AAPB vs. Synechococcus; (F) bacteria vs. Prochlorococcus; (G) picoeukaryotes vs. Prochlorococcus; (H) Synechococcus vs. Prochlorococcus; (I) AAPB vs. Prochlorococcus; (J) AAPB vs. bacteria. Abundance data are depth-weighted averages over the euphotic zone. Pro.: Prochlorococcus; Syn.: Synechococcus; Euk.: picoeukaryotes; Total Bact.: total heterotrophic bacteria.
and the strength of the pycnocline are key physical factors controlling vertical distribution of the picoplankton. A strong pycnocline can behave as a barrier to the vertical transport of dissolved chemicals such as nutrients. Our results showed that both the biomass of autotrophic picoplankton in the upper mixed-layer and the depth attenuation were higher at high latitudes (K2) than at low latitudes, except for the off-shore station ENP4, where the biomass and depth attenuation were highest (Fig. 3). Overall, latitude difference (mainly temperature difference) seemed to be more responsible for changes of picoplankton community structure, while nutrient availability was more important for picoplankton biomass differences.

4.3. Potential contribution of the picoplankton to carbon cycling in the upper ocean

Pico-sized phytoplankton biomass could be significant in carbon export from the surface ocean. Their potential export pathways include aggregation and incorporation into settling detritus, and indirect export through consumption of picoplankton aggregates by organisms at higher trophic levels (Barber, 2007; Buesseler et al., 2007; Richardson and Jackson, 2007). The main contributors to autotrophic picoplankton biomass were different at the sites investigated. Prochlorococcus contributed most carbon biomass to the total autotrophic picoplankton biomass in the oligotrophic subtropical Pacific, while picophytoplankton biomass was dominated by picoeukaryotes at K2 and was co-dominated by Synechococcus and picoeukaryotes at station ENP4 (Fig. 5B). Biomass ratios of autotrophic to heterotrophic picoplankton were 2–2.5 at K2 and ENP4 and ~1 at WNPG1–2 and ENP1–3, showing significant difference among the different provinces (p < 0.01). This revealed that within the picoplankton community, autotrophic picoplankton make a higher contribution to total picoplankton biomass in mesotrophic or relatively eutrophic areas, while heterotrophic bacteria become more important in oligotrophic oceans as they contribute more to carbon cycling through the “microbial loop” (Azam et al., 1983).

Although accounting for only a small proportion of the total heterotrophic bacteria in terms of abundance, the AAPB are an important functional member of the community and may play a unique role in carbon cycling in the upper ocean ecosystem. Their ability to supplement or substitute respiration with the light-driven generation of ATP and reductants for carbon anabolism preserves the existing organic carbon (Koblizek et al., 2001). In terms of carbon export, the cell volume of AAPB on an average is usually two–four times greater than the other heterotrophic bacteria (present measurements) (Sieracki et al., 2006; Yurkov and Beatty, 1998a). It is therefore speculated that AAPB cells are easily grazed (Sieracki et al., 2006) and can settle out of the euphotic zone (Barber, 2007; Richardson and Jackson, 2007) forming vertical flux. Furthermore, their rather rapid growth (Koblizek et al., 2005, 2007) fuels the flux of carbon export more than their abundance alone would predict. In the present study, the biomass contribution of AAPB was significantly higher at K2 than other stations (p < 0.01) (Fig. 5C). Contribution of the AAPB to the total bacterial carbon biomass increased significantly with increasing nutrient conditions, from the WNPG to the Eastern North subtropical Pacific (ENP1–4). (A), total heterotrophic bacteria (Total Bact.) vs. pico-sized phytoplankton (picophyto.); (B), picoeukaryotes (Euk.) vs. Synecococcus (Syn.) vs. Prochlorococcus (Pro.); (C), AAPB vs. non-AAPB (other heterotrophic bacteria excluding AAPB). Values are % of carbon biomass of picoplankton calculated by depth-weighted average over euphotic zone.

for large zooplankton such as copepods and for the particulate organic carbon pool that fuels the flux of particles sinking to the deep ocean (Barber, 2007; Buesseler et al., 2007; Richardson and Jackson, 2007). The contribution of primary producers to carbon export from the surface layer of the ocean is reported to be at rates proportional to those of their production (Barber, 2007;
Richardson and Jackson, 2007). As known from other studies in the VERTIGO Project, K2 is a site of high diatom biomass (Buesseler et al., 2008). Oligotrophic North Pacific regions in contrast have low nano- or micro-phytoplankton biomass, but high pico-phytoplankton biomass. Therefore, picophytoplankton could be an important source of new organic carbon for upper trophic level organisms and for detritus production, and thus the export flux from the surface layer to the deep sea, especially in the oligotrophic subtropical Pacific.

Acknowledgments

We thank the chief scientist of the VERTIGO cruise, Ken Buesseler, the chief scientists of the Global cruise, the captains and crews of the R.V. Roger Revelle and R.V. Ocean No. 1, and many other colleagues on board for their assistance in collecting the samples. We also thank Dr. S.J. Saitoh and S. Okamoto for providing the chlorophyll data at K2, and Dr. Rongcheng Lin for other colleagues on board for their assistance in collecting the samples. We also thank Dr. S.I. Saitoh and S. Okamoto for polishing the English. Professor John Hodgkiss is thanked for his help in editing the English.

References

